
Traceability Fundamentals1

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Grünbacher, Alex Dekhtyar, Giulio Antoniol,
Jonathan Maletic and Patrick Mäder

Abstract This chapter seeks to provide a reference resource on traceability
fundamentals. It defines the essential traceability terminology of trace, trace
artifact, trace link, traceability and tracing, and is supplemented by an
extensive glossary2 that has been developed and endorsed by members of the
traceability community. This chapter also offers a model of a generic
traceability process and describes the essential activities involved in the
lifecycle of a trace. This model has been used as a frame of reference for
articulating the grand challenge of traceability, as reported in Chapters X to Y
of this book. The chapter also describes the basic types of traceability and
explains a number of key associated concepts.

1 Introduction

The role of traceability was recognised in the pioneering NATO working
conference held in 1968 to discuss the problems of software engineering (Naur
and Randell 1969). One of the working papers in this conference examined the
requirements for an effective methodology of computer system design and re-
ported on the need to be able to ensure that a system being developed actually
reflects its design. In a critique of three early projects focused on methodology,
each was praised for the emphasis they placed on making “the system that they
are designing contain explicit traces of the design process” (Randell 1968).

Traceability was subsequently noted as a topic of interest in one of the earli-
est surveys on the state of the art and future trends in software engineering
(Boehm 1976), and its practice was certainly evident in those domains con-
cerned with developing early tool support (Pierce 1978; Dorfman and Flynn
1984). By the 1980s, traceability could be found as a requirement in a large

1 Section 3 of this chapter includes reproduced material from Technical Report #XXX,
Center of Excellence for Software Traceability (CoEST), with permission. Please direct any
feedback on this material via the CoEST website (http://www.coest.org).
2 Version 1.0 of the traceability glossary is provided as an appendix to this book and the latest
version of the glossary is maintained at http://www.coest.org. Please note that all glossary
terms are defined using U.S. English.

2

number of national and international standards for software and systems devel-
opment, such as the high-profile DOD-STD-2167A (Dorfman and Thayer
1990). Published research began to proliferate and diversify in the area of
traceability in the late 1990s, spurred somewhat by renewed interest in the
topic arising from two newly formed International Requirements Engineering
professional colloquia, with two early papers focusing on the issues and prob-
lems associated with traceability (Ramesh and Edwards 1993; Gotel and
Finkelstein 1994), the latter providing for the first systematic analysis of the
traceability problem. The topic of traceability continues to receive growing re-
search attention in the twenty-first century, with a particular focus on auto-
mated trace generation (Hayes et al. 2006; Cleland-Huang et al. 2007) and with
concomitant advances in model-driven development (Aizenbud-Reshef et al.
2006; Galvao and Goknil 2007; Winkler and von Pilgrim 2010).

However, despite the introduction of widely-available commercial tools
claiming to support traceability in the 1980s, and substantive growth in this
market through the 1990s and millennium, the actual practice of traceability
remains poorly documented and, where it is examined (Mäder et al. 2009b), it
appears to be little influenced by research. One confounding factor is inconsis-
tency in the use of traceability terminology and concepts, not only between re-
searchers and practitioners, but also within each of these communities them-
selves.

This chapter seeks to provide a resource on traceability fundamentals. It de-
fines the essential traceability terminology in Section 2 and is supplemented by
an extensive glossary that has been developed and endorsed by members of the
traceability community. This glossary can be found as an appendix to this book
and provides definitions for all the terms that are italicised in this chapter. The
chapter also offers a model of a generic traceability process in Section 3 and
describes the basic activities involved in the lifecycle of a trace. This model is
used as a frame of reference for articulating the grand challenge of traceability
in Chapters X to Y of this book. Section 4 describes the basic types of trace-
ability and explains some key associated concepts. Section 5 concludes the
chapter.

2 Essential Traceability Terminology

At the most fundamental level, traceability is simply the potential to relate
data that is stored within artifacts of some kind, along with the ability to exam-
ine this relationship. The ability to achieve traceability therefore depends upon
the creation of navigable links between data held within artifacts that are
otherwise disconnected. The value of traceability lies in the many software and
systems engineering activities and tasks that the information provided through
such interrelations can enable, such as change impact analysis, coverage analy-

3

sis, dependency analysis, etc. (Gotel and Finkelstein 1994; Lindvall and San-
dahl 1996; Ramesh and Jarke 2001); tracing can provide visibility into required
aspects of the software and systems development process and contribute to a
better understanding of the software system under development.

This section defines two underlying terms, trace artifact and trace link, that
are the building blocks of traceability. It subsequently uses these definitions to
clarify the term trace. Based upon these definitions, the terms traceability and
tracing are then defined.

2.1 Trace Artifact

Trace artifacts are traceable units of data. They refer to any residual data or
marks of the software and systems development process that are made amen-
able to being traced. The term can apply to a single requirement, a cluster of
requirements, or even to an entire requirements specification document. The
term can apply to a Unified Modeling Language (UML) class diagram, a single
class therein, or even to a particular class operation. For conceptual simplicity,
the general term ‘artifact’ is used to apply to both the object as a whole and to
any internal delineation therein. What this means is that the granularity of a
trace artifact is not pre-determined and may not even be consistent in any one
particular project. It is this uncertainty in the granularity of trace artifacts that
can lead to many problems in establishing and using traceability in practice.

Trace artifact – A traceable unit of data (e.g., a single requirement, a
cluster of requirements, a UML class, a UML class operation, a Java
class or even a person). A trace artifact is one of the trace elements
and is qualified as either a source artifact or as a target artifact when it
participates in a trace. The size of the traceable unit of data defines the
granularity of the related trace.

Three terms closely associated with trace artifact include trace artifact type,

source artifact and target artifact. The trace artifact type serves to classify the
nature and function of the artifact, and is usually a recognised and ‘doc-
umented’ by-product of the software and systems development process. The
terms source artifact and target artifact serve to characterise the role of a par-
ticular trace artifact in a specified trace.

Trace artifact type – A label that characterizes those trace artifacts
that have the same or a similar structure (syntax) and/or purpose (se-
mantics). For example, requirements, design and test cases may be dis-
tinct artifact types.

4

Source artifact – The artifact from which a trace originates.

Target artifact – The artifact at the destination of a trace.

2.2 Trace Link

A trace link is a single association forged between two trace artifacts, one
comprising the source artifact and one comprising the target artifact. This defi-
nition of trace link implies that the link has a primary direction for tracing,
from the source artifact to the target artifact. Directionality between the two
trace artifacts provides for the ability to traverse the trace link, or to follow it,
so as to associate the two pieces of data. It is this juxtaposition that is sought
through traceability, rather than the pure retrieval of one piece of data. In prac-
tice, however, every trace link can be traversed in two directions, so the trace
link also has a reverse trace link direction and is effectively bidirectional, as il-
lustrated in Figure 1.

Trace link – A specified association between a pair of artifacts, one
comprising the source artifact and one comprising the target artifact.
The trace link is one of the trace elements. It may or may not be anno-
tated to include information such as the link type and other semantic
attributes. This definition of trace link implies that the link has a pri-
mary trace link direction for tracing. In practice, every trace link can
be traversed in two directions (i.e., if A tests B then B is tested by A),
so the link also has a reverse trace link direction for tracing. The trace
link is effectively bidirectional. Where no concept of directionality is
given or implied, it is referred to solely as an association.

Fig. 1 Trace link directionality

The directionality of a trace link is therefore an important concept. Where a

source artifact and a target artifact are defined, the semantics of the direction-
ality is clear. Whether or not the trace link can physically be navigated in both
directions, however, is usually a matter of implementation. Three terms clarify

5

the directionality inherent in a trace link, the primary trace link direction, the
reverse trace link direction and the concept of a bidirectional trace link.

Primary trace link direction – When a trace link is traversed from its
specified source artifact to its specified target artifact, it is being used
in the primary direction as specified. Where link semantics are pro-
vided, they provide for a way to ‘read’ the traversal (e.g., A imple-
ments B).

Reverse trace link direction – When a trace link is traversed from its
specified target artifact to its specified source artifact, it is being used
in the reverse direction to its specification. The link semantics may no
longer be valid, so a change from active to passive voice (or vice-
versa) is generally required (e.g., if A replaces B then B is replaced by
A).

Bidirectional trace link – A term used to refer to the fact that a trace
link can be used in both a primary trace link direction and a reverse
trace link direction.

Two interrelated terms that are closely associated with trace link are trace

link type and link semantics. The trace link type serves to classify the nature
and function of the trace link. It is usually characterised according to the mean-
ing of the relationship between the two artifacts that the link associates, so the
trace link type is generally defined in terms of the link’s semantic role. The
trace link type is a broader term that may define a collection of links with the
same link semantics.

Trace link type – A label that characterizes those trace links that have
the same or similar structure (syntax) and/or purpose (semantics). For
example, ‘implements’, ‘tests’, ‘refines’ and ‘replaces’ may be distinct
trace link types.

Link semantics – The purpose or meaning of the trace link. The link
semantics are generally specified in the trace link type, which is a
broader term that may also capture other details regarding the nature of
the trace link, such as how the trace link was created.

The term trace relation is frequently used interchangeably with the term

trace link in many publications. In reviewing the traceability fundamentals and
encouraging the more consensual use of terminology within the traceability
community, the proposal is to differentiate the two terms in the future. Follow-
ing from database theory, a trace relation describes all the trace links that are
specified between two defined artifact types acting as source artifacts and target

6

artifacts. It is the trace relation that is captured in the commonly used trace-
ability matrix.

Trace relation – All the trace links created between two sets of speci-
fied trace artifact types. The trace relation is the instantiation of the
trace relationship and hence is a collection of traces. For example, the
trace relation would be the actual trace links that associate the instan-
ces of requirements artifacts with the instances of test case artifacts on
a project. The trace relation is commonly recorded within a traceability
matrix.

Traceability matrix – A matrix recording the traces comprising a
trace relation, showing which pairs of trace artifacts are associated via
trace links.

2.3 Trace

Use of the term trace has led to some misunderstanding in the traceability
community since it has two distinct meanings dependent upon whether the term
is being used as a noun (i.e., ‘a mark remaining’ (OED 2007)) or as a verb,
(i.e., ‘tracking or following’ (OED 2007)). When used in a software and sys-
tems engineering context, the meanings are often used interchangeably whereas
they need to be distinguished. ‘Trace’ can, therefore, be defined in two ways.

Trace (Noun) – A specified triplet of elements comprising: a source
artifact, a target artifact and a trace link associating the two artifacts.
Where more than two artifacts are associated by a trace link, such as
the aggregation of two artifacts linked to a third artifact, the aggre-
gated artifacts are treated as a single trace artifact. The term applies,
more generally, to both traces that are atomic in nature (i.e., singular)
or chained in some way (i.e., plural).

Trace (Verb) – The act of following a trace link from a source artifact
to a target artifact (primary trace link direction) or vice-versa (reverse
trace link direction).

When used as a noun, the term ‘trace’ refers to the complete triplet of trace

elements that enable the juxtaposition of two pieces of data: the source artifact,
the target artifact and the trace link. Additional information, in the form of
trace attributes, may qualify properties of the overall trace or of each of the
three elements. Such traces can either be atomic or chained (see Figure 2).
Where chained, the trace links are strung together by the source and the target

7

trace artifacts that they connect, the target artifact for one trace becoming the
source artifact for the subsequent trace, to form a series of data juxtapositions.

Atomic trace – A trace (noun sense) comprising a single source arti-
fact, a single target artifact and a single trace link.

Chained trace – A trace (noun sense) comprising multiple atomic
traces strung in sequence, such that a target artifact for one atomic
trace becomes the source artifact for the next atomic trace.

Fig 2. A trace provided via a single trace link or via a chain of trace links

Trace element – Used to refer to either one of the triplets comprising a
trace: a source artifact, a target artifact or a trace link.

Trace attribute – Additional information (i.e., meta-data) that charac-
terizes properties of the trace or of its individual trace elements, such as a
date and time stamp of the trace’s creation or the trace link type.

When used as a verb, the term ‘trace’ (i.e., to trace) is associated with the

activity of tracing (see Section 2.5).

2.4 Traceability

Traceability is the potential for traces (as defined above in the noun sense)
to be established (i.e., created and maintained) and used. The challenge for
traceability is that each of the component elements (i.e., the trace artifacts and
trace links) needs to be acquired, represented and stored, and then subsequently
retrieved as a trace to enable software and systems engineering activities and

8

tasks. Both the time and the manner in which traces are established and brought
together for use will depend upon the purposes to which the traceability is put.
Consequently, traces exist within their own lifecycles and can (ideally) be re-
used in different contexts. The type and the granularity of the trace artifacts,
and the semantics of the trace link, are therefore details that are best determined
on a project-by-project basis. They could perhaps even be determined on a
moment-to-moment basis in relation to an overarching traceability strategy. It
is this process through which traces come into existence and eventually expire
that influences the definition of a generic traceability process model in Section
3.

Traceability – The potential for traces to be established and used.
Traceability (i.e., trace ‘ability’) is thereby an attribute of an artifact
or of a collection of artifacts. Where there is traceability, tracing can
be undertaken and the specified artifacts should be traceable.

Frequently used terms include requirements traceability, software trace-

ability and systems traceability. These all delineate the artifact types that are
the primary objects of interest for tracing purposes. For example, in the case of
requirements traceability, this focuses explicitly on the potential to establish
and use traces that associate requirements-related artifacts in some way or an-
other. Other more specific traceability terms are defined in the glossary that ac-
companies this chapter.

Requirements traceability – “The ability to describe and follow the
life of a requirement in both a forwards and backwards direction (i.e.,
from its origins, through its development and specification, to its sub-
sequent deployment and use, and through periods of ongoing refine-
ment and iteration in any of these phases).” (Gotel and Finkelstein
1994.)

2.5 Tracing

Tracing implies undertaking all those activities required to put traceability
in place, in addition to all those activities that exploit the results.

Tracing – The activity of either establishing or using traces.

9

Tracing activities demand some form of agency, and leads to the three asso-
ciated terms of manual, automated and semi-automated tracing when referring
to the nature of the activity that puts the traceability in place.

Manual tracing – When traceability is established by the activities of
a human tracer. This includes traceability creation and maintenance
using the drag and drop methods that are commonly found in current
requirements management tools.

Automated tracing – When traceability is established via automated
techniques, methods and tools. Currently, it is the decision as to
among which artifacts to create and maintain trace links that is auto-
mated.

Semi-automated tracing – When traceability is established via a
combination of automated techniques, methods, tools and human ac-
tivities. For example, automated techniques may suggest candidate
trace links or suspect trace links and then the human tracer may be
prompted to verify them.

3 A Generic Traceability Process Model

Figure 3 depicts a generic traceability process model. It shows the essential
activities that are required to bring traces into existence and to take them
through to eventual retirement. Traces are created, maintained and used, all
within the context of a broader traceability strategy. This strategy provides the
detail of stakeholders’ needs, decisions regarding mechanism and automation,
and also chains atomic traces in some agreed way to enable required activities
and tasks. Continuous feedback is a critical aspect of the entire process to en-
able the traceability strategy to evolve over time. The four key activities of this
generic traceability process model are described in the following sub-sections.

Traceability process model – An abstract description of the series of
activities that serve to establish traceability and render it usable, along
with a description of the typical responsibilities and resourcing re-
quired to undertake them, as well as their inputs and outputs. Distinc-
tive steps of the process comprise traceability strategy, traceability
creation, traceability maintenance and traceability use.

10

Fig. 3 A generic traceability process model

3.1 Traceability Strategy

Effective traceability rarely happens by chance or through ad hoc efforts.
Minimally, it requires having retained the artifacts to be traced, having the ca-
pacity to establish meaningful links between these artifacts and having proced-
ures to interrogate the resulting traces in a goal-oriented manner. Such simple
requirements conceal complex decisions as to the granularity, categorisation
and storage of assorted multi-media artifacts. It also conceals choices as to the
approach for generating, classifying, representing and then maintaining their
inter-artifact and intra-artifact linkages. Additional questions need to be an-
swered, such as: Which of these tracing activities should be manual? Which
should be automated? Where should the responsibilities for these activities lie?
When should they be undertaken? There are many decisions that need to be
made and, therefore, an enabling traceability strategy needs to be built into the
engineering and management practices from day one on a software and systems
engineering project. Figure 4 outlines the typical high-level activities associ-
ated with planning and managing a traceability strategy.

11

Traceability strategy – Those decisions made in order to determine
the stakeholder and system requirements for traceability and to design
a suitable traceability solution, and for providing the control necessary
to keep these requirements and solutions relevant and effective during
the life of a project. Traceability strategy comprises traceability plan-
ning and traceability management activities.

Fig. 4 Planning and managing a traceability strategy

Traceability is concerned with the provisioning of information to help in an-

swering project-specific questions and in undertaking project-directed activities
and tasks; it is thus a supporting system rather than a goal in its own right. This
perspective demands understanding those stakeholders who may need the po-
tential for traceability, what for and when? Acquiring clear-cut answers to these
questions at the start of a project is not straightforward, as both stakeholders
and their task needs will change. Even if these could be articulated exhaus-
tively, building a traceability solution to service all needs is unlikely to be cost-
effective, as resources are generally limited in some finite way. Determining
whose needs to satisfy, and so which traceability-enabled activities and tasks
to facilitate, is a value decision that lies at the heart of a traceability strategy;
determining needs and resourcing constraints is a precursor to any discussion
about trace artifacts, trace links and mechanism.

12

Traceability solution – The traceability information model (TIM) and
traceability process, as defined, designed and implemented for a par-
ticular project situation, along with any associated traceability tooling.
The traceability solution is determined as a core part of the trace-
ability strategy.

Traceability information model (TIM) – A graph defining the per-
missible trace artifact types, the permissible trace link types and the
permissible trace relationships on a project, in order to address the an-
ticipated traceability-related queries and traceability-enabled activi-
ties and tasks. The TIM is an abstract expression of the intended trace-
ability for a project. The TIM may also capture additional information
such as: the cardinality of the trace artifacts associated through a trace
link, the primary trace link direction, the purpose of the trace link
(i.e., the link semantics), the location of the trace artifacts, the tracer
responsible for creating and maintaining the trace link, etc. (See
(Mäder et al. 2009a) for more detail.)

Traceability process – An instance of a traceability process model
defining the particular series of activities to be employed to establish
traceability and render it usable for a particular project, along with a
description of the responsibilities and resourcing required to undertake
them, as well as their inputs and outputs. The traceability process de-
fines how to undertake traceability strategy, traceability creation,
traceability maintenance and traceability use.

Traceability tool – Any instrument or device that serves to assist or
automate any part of the traceability process.

Traceability-enabled activities and tasks – Those software and sys-
tems engineering activities and tasks that traceability supports, such as
verification and validation, impact analysis and change management.

Ensuring that the traceability is then established as planned, and yet can ad-

apt to remain effective as needs evolve and as a project’s artifacts change, is
also the province of traceability strategy. Determining how the traceability will
be provisioned such that the requisite quality can be continuously assured fur-
ther demands analysis, assessment and potential modification of the current
traceability solution. Assessing the quality and the execution of the traceability
solution, and implementing a feedback loop to improve it, is a critical part of
the traceability strategy for a project; it needs to develop and leverage historical
traceability information.

13

Traceability information – Any traceability-related data, such as
traceability information models, trace artifacts, trace links and other
traceability work products.

Within the context of a broader traceability strategy, the creation, mainte-
nance and use of individual traces and their constituent elements all need to be
defined and managed. Given that atomic traces comprise source, target and re-
lational elements, these data requirements need to be identified. This includes
decisions as to meta-data to associate, dependent upon what kinds of trace-
ability-enabled activities and tasks the trace is anticipated to participate in and
support. Resourcing, planning and implementation decisions may hence vary
on a trace-by-trace basis; for instance, it is quite possible that a particular trace
is not created or maintained until its use is actually required. Traces thereby in-
habit independent lifecycles, the constituent activities of which are examined in
the following sections.

3.2 Traceability Creation

When creating a trace, the elements of the trace have to be acquired, repre-
sented and then stored in some way, as illustrated in Figure 5. Reference mod-
els and classification schemes characterising different types of trace link and
trace artifacts drive the traceability creation process, as usually defined within
the traceability information model of the overarching traceability strategy.

Traceability creation – The general activity of associating two (or
more) artifacts, by providing trace links between them, for tracing
purposes. Note that this could be done manually, automatically or
semi-automatically, and additional annotations can be provided as de-
sired to characterize attributes of the traces.

While project artifacts are generally pre-existing on a project, the links be-

tween them may not yet be defined. Techniques to support the creation of trace
links can range from manual to automated approaches, each with differing de-
grees of efficiency and effectiveness. The differentiating factor is often whether
the trace links are created concurrently with the forward engineering process
(i.e., trace capture) or at some point later (i.e., trace recovery). Validation is
therefore critical to the viability of the traceability creation process, regardless
of how trace links are initially created, as it is concerned with determining and
assuring the credibility of the trace as a whole.

14

Trace capture – A particular approach to trace creation that implies
the creation of trace links concurrently with the creation of the arti-
facts that they associate. These trace links may be created automati-
cally or semi-automatically using tools.

Trace recovery – A particular approach to trace creation that implies
the creation of trace links after the artifacts that they associate have
been generated and manipulated. These trace links may be created
automatically or semi-automatically using tools. The term can be con-
strued to infer that the trace link previously existed but now is lost.

Fig. 5 Traceability creation

3.3 Traceability Maintenance

An association made between two artifacts at a moment in time to serve a
particular purpose does not automatically mean that the resulting trace will
have a persistent, useful life. The need for maintenance on a trace can be trig-
gered by changes to any of the trace’s elements that, in turn, can be triggered
by changes to elements within a chain. Traceability maintenance can also be
required following changes to the requirements and constraints that drive the
overarching traceability strategy.

15

Traceability maintenance – Those activities associated with updating
pre-existing traces as changes are made to the traced artifacts and the
traceability evolves, creating new traces where needed to keep the
traceability relevant and up to date.

To maintain a trace, it needs to be retrieved and the nature of the change
analysed to determine what update is necessary, as illustrated in Figure 6. This
may necessitate the propagation of changes and / or the creation of entirely new
traces. Updates need to be performed, where applicable, recorded and verified.
Feedback on the maintenance process is also essential for evolving the over-
arching traceability strategy. As per traceability creation, traces can be main-
tained continuously or on-demand.

Fig. 6 Traceability maintenance

Continuous traceability maintenance – The update of impacted
trace links immediately following changes to traced artifacts.

On-demand traceability maintenance – A dedicated and overall up-
date of the trace set (in whole or in part), generally in response to
some explicit trigger and in preparation for an upcoming traceability
use.

16

3.4 Traceability Use

The availability and usefulness of traces has to be ensured to allow for their
ongoing use throughout the software and systems development lifecycle, poten-
tially in a myriad of configurable ways. Here, it is helpful to distinguish be-
tween short-term traceability use during initial product development and long-
term traceability use during subsequent product maintenance. Typical short-
term uses for traceability include requirements completeness analysis, require-
ments trade-off analysis or requirements-to-acceptance-test mapping for final
acceptance testing. Typical examples of long-term uses for traceability include
the determination of effects of changes to a software system or the propagation
of changes during its evolution.

Traceability use – Those activities associated with putting traces to
use to support various software and systems engineering activities and
tasks, such as verification and validation, impact analysis and change
management.

Any atomic trace is likely to play a role in the context of many use contexts.

To use a trace in isolation, or as a constituent part of a chain, it needs to be re-
trieved and rendered visible in some task-specific way, as suggested in Figure
7. An important component of the use process is assessing the quality of the
traceability that is provided in terms of the fitness for purpose with respect to
the task or activity for which the traceability is required. Such information pro-
vides a feedback loop to improve the overall traceability strategy.

17

Fig. 7 Traceability use

4 Basic Types of Traceability and Associated Concepts

Additional terms that delineate different basic types of traceability are high-
lighted in the context of Figure 8 and defined below.

The traceability of Figure 8 is bidirectional. Forward traceability offers the
potential to link a single requirement statement to those methods of the class
designed to implement it, and subsequently to follow this trace link to reveal
the forward engineering process. Backward traceability offers the potential to
link the class methods back to the requirement that they help to satisfy, and
subsequently to follow this trace link to reveal the reverse engineering process.
The forward and the backward direction pertain to the logical flow of the soft-
ware and systems development process. These are the fundamental and primi-
tive types of tracing.

18

Fig. 8 A simplified, but typical, tracing context

Forward traceability – The potential for forward tracing.

Forward tracing – In software and systems engineering contexts, the
term is commonly used when the tracing follows subsequent steps in a
developmental path, which is not necessarily a chronological path,
such as forward from requirements through design to code. Note that
the trace links themselves could be used in either a primary or reverse
trace link direction, dependent upon the specification of the participat-
ing traces.

Backward traceability – The potential for backward tracing.

Backward tracing – In software and systems engineering contexts,
the term is commonly used when the tracing follows antecedent steps
in a developmental path, which is not necessarily a chronological path,
such as backward from code through design to requirements. Note that
the trace links themselves could be used in either a primary or reverse
trace link direction, dependent upon the specification of the participat-
ing traces.

In Figure 8, the potential to trace from the requirement through to the code

is vertical traceability, linking artifacts at differing levels of abstraction to ac-
commodate lifecycle-wide or end-to-end traceability. Any potential to trace be-
tween versions of the requirement or versions of the code is horizontal trace-

19

ability, linking artifacts at the same level of abstraction at different moments in
time to accommodate versioning and rollback. These two types of tracing, ver-
tical and horizontal, employ both forward and backward tracing.

Vertical traceability – The potential for vertical tracing.

Vertical tracing – In software and systems engineering contexts, the
term is commonly used when tracing artifacts at differing levels of ab-
straction so as to accommodate lifecycle-wide or end-to-end trace-
ability, such as from requirements to code. Vertical tracing may em-
ploy both forward tracing and backward tracing.

Horizontal traceability – The potential for horizontal tracing.

Horizontal tracing – In software and systems engineering contexts,
the term is commonly used when tracing artifacts at the same level of
abstraction, such as: (i) traces between all the requirements created by
‘Mary’, (ii) traces between requirements that are concerned with the
performance of the system, or (iii) traces between versions of a par-
ticular requirement at different moments in time. Horizontal tracing
may employ both forward tracing and backward tracing.

Two additional types of traceability are more conceptual in nature, and these

can employ each of the above tracing types in some combination. Post-
requirements (specification) traceability comprises those traces derived from or
grounded in the requirements, and hence explicates the requirements’ deploy-
ment process. Pre-requirements (specification) traceability comprises all those
traces that show the derivation of the requirements from their sources, and
hence explicates the requirements’ production process. Only post-requirements
traceability is evident in Figure 8 since the requirement is the earliest develop-
ment artifact available; this is the most common form of traceability in prac-
tice.

Post-requirements (specification) traceability – The potential for
post-requirements (specification) tracing.

Post-requirements (specification) tracing – In software and systems
engineering contexts, the term is commonly used to refer to those
traces derived from or grounded in the requirements, and hence the
traceability explicates the requirements’ deployment process. The
tracing is, therefore, forward from requirements and back to require-
ments. Post-requirements (specification) tracing may employ forward
tracing, backward tracing, horizontal tracing and vertical tracing.

20

Pre-requirements (specification) traceability – The potential for
pre-requirements (specification) tracing.

Pre-requirements (specification) tracing – In software and systems
engineering contexts, the term is commonly used to refer to those
traces that show the derivation of the requirements from their original
sources, and hence the traceability explicates the requirements’ pro-
duction process. The tracing is, therefore, forward to requirements and
back from requirements. Pre-requirements (specification) tracing may
employ forward tracing, backward tracing, horizontal tracing and
vertical tracing.

Figure 8 also serves to highlight some basic complexities surrounding trace-

ability and so lends itself to the definition of a number of associated traceability
concepts:

• Do we create an atomic trace for each class method or for the cluster of
methods within a class? This is an issue of trace granularity.

Trace granularity – The level of detail at which a trace is recorded
and performed. The granularity of a trace is defined by the granularity
of the source artifact and the target artifact.

• Do the three methods in the Display class fully satisfy the requirement? This

is a question related to completeness. Does the trace then lead to the right
code? This is a question of correctness. Is the trace up to date? This depends
upon whether the traced artifacts reflect the latest project status. All of these
questions are associated with the concept of traceability quality.

Traceability quality – A measurable property of the overall trace-
ability at a particular point in time on a project, such as a confidence
score depicting its overall correctness, accuracy, precision, complete-
ness, consistency, timeliness, usefulness, etc.

• As Figure 8 suggests, traces typically associate artifacts that are semanti-

cally very different, so the use of natural language alone to derive a trace
link cannot always be trusted. For example, the play transition in the behav-
ioural Statechart of Figure 8 does not trace to the play method in the class
diagram, or does it? Open issues in traceability research and practice have
led to the formulation of a set of traceability challenges by the traceability
community, and work is now underway to develop a Traceability Body of
Knowledge (TBOK).

21

Traceability community – Those people who are establishing and us-
ing traceability in practice, or have done so in the past or intend to do
so in the future. Also, those people who are active in traceability re-
search or in one of its many interrelated areas.
Traceability challenge – A significant problem with traceability that
members of the international research and industrial communities
agree deserves attention in order to achieve advances in traceability
practice.
Traceability Body of Knowledge (TBOK) – A proposed resource for
the traceability community, containing traceability benchmarks, good
traceability practices, traceability experience reports, etc.

5 Conclusions

This chapter has defined terminology and concepts that are fundamental to
the discipline of traceability. This includes the essential terms of trace, trace ar-
tifact, trace link, traceability and tracing in Section 2, along with a number of
interrelated and dependent terms. The chapter has also described a generic
traceability process model in Section 3 and characterised the basic activities in-
volved in the lifecycle of a trace. This includes a consideration of the activities
comprising traceability strategy, traceability creation, traceability maintenance
and traceability use. In Section 4, the chapter distinguishes between basic types
of traceability and explains some key associated concepts.

The chapter is supplemented by an extensive glossary that has been devel-
oped and endorsed by members of the traceability community. This glossary
contains additional terms and can be found as an appendix to this book.

References

(Aizenbud-Reshef et al. 2006) Aizenbud-Reshef, N., Nolan, B.T., Rubin, J. and Shaham-
Gafni, Y. Model Traceability. IBM Systems Journal, Volume 45, Issue 3, July 2006, pp.
515 - 526.

(Boehm 1976) Boehm, B.W. Software Engineering. IEEE Transactions on Computers, Vol-
ume c-25, Number 12, December 1976, pp. 1226 - 1241.

(Cleland-Huang et al. 2007) Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B.
and Clark, S. Best Practices for Automated Traceability. IEEE Computer, Volume 40, Is-
sue 6, June 2007, pp. 27 – 35.

(Dorfman and Flynn 1984) Dorfman, M. and Flynn, R.F. ARTS – An Automated Require-
ments Traceability System. The Journal of Systems and Software, Volume 4, Issue 1,
April 1984, pp. 63 – 74.

22

(Dorfman and Thayer 1990) Dorfman, M. and Thayer, R.H. Standards, Guidelines, and Ex-
amples on System and Software Requirements Engineering: IEEE Computer Society
Press Tutorial. IEEE Computer Society Press, Los Alamitos, California, 1990.

(Galvao and Goknil 2007) Galvao, I. and Goknil, A. Survey of Traceability Approaches in
Model-Driven Engineering. In Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, Annapolis, Maryland, USA, 15 – 19 October
2007, pp. 313 - 324.

(Gotel and Finkelstein 1994) Gotel, O. and Finkelstein, A. An Analysis of the Requirements
Traceability Problem. In Proceedings of the 1st IEEE International Conference on Re-
quirements Engineering, Colorado Springs, Colorado, USA, 18 – 22 April 1994, pp. 94 –
101.

(Hayes et al. 2006) Huffman Hayes, J., Dekhtyar, A. and Sundaram, S. Advancing Candidate
Link Generation for Requirements Tracing: The Study of Methods. IEEE Transactions on
Software Engineering, Volume 32, Number 1, January 2006, pp. 4 - 19.

(Lindvall and Sandahl 1996) Lindvall, M. and K. Sandahl, K. Practical implications of trace-
ability. Software — Practice and Experience, Volume 26, Number 10, October 1996, pp.
1161 - 1180.

(Mäder et al. 2009a) Mäder, P., Gotel, O. and Philippow, I. Getting Back to Basics: Promot-
ing the Use of a Traceability Information Model in Practice. In Proceedings of the 5th In-
ternational Workshop on Traceability in Emerging Forms of Software Engineering, Van-
couver, Canada, 18 May 2009.

(Mäder et al. 2009b) Mäder, P., Gotel, O. and Philippow, I. Motivation Matters in the Trace-
ability Trenches. In Proceedings of 17th IEEE International Requirements Engineering
Conference, Atlanta, Georgia, USA, 31 August – 4 September 2009, pp. 143 – 148.

(Naur and Randell 1969) Naur, P. and Randell, B. (Eds.) Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch, Germany, 7 - 11
October 1968, Brussels, Scientific Affairs Division, NATO (Published 1969).

(OED 2007) The Oxford English Dictionary. Online Version, Oxford University Press,
http://www.oed.com (accessed January 2007).

(Pierce 1978) Pierce, R. A Requirements Tracing Tool. ACM SIGSOFT Software Engineer-
ing Notes. Volume 3, Number 5, November 1978, pp. 53 - 60.

(Ramesh and Edwards 1993) Ramesh, B. and Edwards, M. Issues in the Development of a
Requirements Traceability Model. In Proceedings of the IEEE International Symposium
on Requirements Engineering, San Diego, California, USA, 4 – 6 January 1993, pp. 256 –
259.

(Ramesh and Jarke 2001) Ramesh B. and Jarke M. Towards Reference Models for Require-
ments Traceability. IEEE Transactions on Software Engineering, Volume 27, Number 1,
January 2001, pp. 58 - 93.

(Randell 1968) Randell, B. Towards a Methodology of Computing System Design. In NATO
Software Engineering Conference, 1968, Report on a conference sponsored by the NATO
Science Committee, Naur, P. and Randell, B. (Eds.) Garmisch, Germany, 7 - 11 October
1968, pp. 204 - 208. Brussels, Scientific Affairs Division, NATO (Published 1969).

(Winkler and von Pilgrim 2010) Winkler, S. and von Pilgrim, J. A survey of traceability in
requirements engineering and model-driven development. Software and Systems Model-
ing, Volume 9, Number 4, September 2010, pp. 529 - 565, Springer (Published on line 22
December 2009).

